The Pore-Forming Toxin Listeriolysin O Mediates a Novel Entry Pathway of L. monocytogenes into Human Hepatocytes
نویسندگان
چکیده
Intracellular pathogens have evolved diverse strategies to invade and survive within host cells. Among the most studied facultative intracellular pathogens, Listeria monocytogenes is known to express two invasins-InlA and InlB-that induce bacterial internalization into nonphagocytic cells. The pore-forming toxin listeriolysin O (LLO) facilitates bacterial escape from the internalization vesicle into the cytoplasm, where bacteria divide and undergo cell-to-cell spreading via actin-based motility. In the present study we demonstrate that in addition to InlA and InlB, LLO is required for efficient internalization of L. monocytogenes into human hepatocytes (HepG2). Surprisingly, LLO is an invasion factor sufficient to induce the internalization of noninvasive Listeria innocua or polystyrene beads into host cells in a dose-dependent fashion and at the concentrations produced by L. monocytogenes. To elucidate the mechanisms underlying LLO-induced bacterial entry, we constructed novel LLO derivatives locked at different stages of the toxin assembly on host membranes. We found that LLO-induced bacterial or bead entry only occurs upon LLO pore formation. Scanning electron and fluorescence microscopy studies show that LLO-coated beads stimulate the formation of membrane extensions that ingest the beads into an early endosomal compartment. This LLO-induced internalization pathway is dynamin-and F-actin-dependent, and clathrin-independent. Interestingly, further linking pore formation to bacteria/bead uptake, LLO induces F-actin polymerization in a tyrosine kinase-and pore-dependent fashion. In conclusion, we demonstrate for the first time that a bacterial pathogen perforates the host cell plasma membrane as a strategy to activate the endocytic machinery and gain entry into the host cell.
منابع مشابه
Recombinant Production of a Novel Fusion Protein: Listeriolysin O Fragment Fused to S1 Subunit Of Pertussis Toxin
Background: Some resources have suggested that genetically inactivated pertussis toxoid (PTs) bear a more protective effect than chemically inactivated products. This study aimed to produce new version of PT, by cloning an inactive pertussis toxin S1 subunit (PTS1) in a fusion form with N-terminal half of the listeriolysin O (LLO) pore-forming toxin. Methods: Deposited pdb structure file of the...
متن کاملCurcumin Promotes the Clearance of Listeria monocytogenes both In Vitro and In Vivo by Reducing Listeriolysin O Oligomers
The pore-forming toxin listeriolysin O (LLO), an essential virulence factor that is secreted by Listeria monocytogenes (L. monocytogenes), is responsible for bacterial breaching at the phagosomal membranes and subsequent release into the cytoplasm; it cannot be recognized by the host immune system. The vital role that LLO plays in bacterial pathogenicity and evading host immune clearance makes ...
متن کاملFisetin inhibits Listeria monocytogenes virulence by interfering with the oligomerization of listeriolysin O.
Listeriolysin O (LLO), an essential virulence determinant of Listeria monocytogenes, is a pore-forming toxin whose primary function is to facilitate cytosolic bacterial replication by breaching the phagosomal membranes, which is critical for the pathogen to evade host immune recognition. The critical role of LLO in the virulence of L. monocytogenes renders it an ideal target for designing novel...
متن کاملRole for telomerase in Listeria monocytogenes infection.
Human telomerase reverse transcriptase (hTERT) is the catalytic subunit of the human telomerase complex. Growing evidence suggests that hTERT also contributes to the cell physiology independently of telomere elongation. However, its role in bacterial infection is unknown. Here we show that hTERT is critical for Listeria monocytogenes infection, as the depletion of hTERT impaired bacterial intra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2011